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Abstract: - This paper will focus on theoretical study of BEC in one dimension with weakly attractive 

interactions in particular in a symmetric harmonic oscillator potential. In this case, the ground state may not be 

symmetric state, which is in contrast to a BEC with repulsive interaction.   The behaviors of the wave function 

under the influences of different external trapping potentials usually used in experiments that lead to produced 

Bose-Einstein condensation in ultra cold gases is analysis. Several values of harmonic trapping potentials are 

used.  These analyses give us the overall view of the region of confinement that the external trapping potentials 

have employed and the influence of some terms in Gross–Pitaevskii equation.  
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I. INTRODUCTION 
 The development of quantum mechanics in the early part of the twentieths century presented 

sophisticatedly symmetric solution; both massive particles and electromagnetic waves share the same 

fundamental description, in terms of their wave functions. Within this description one can no longer obtain the 

phase space coordinates of the particle with absolute certainty, either for a massive particle or a photon. Rather, 

the wave function Ψ (r) gives the probability amplitude that the massive particle or photon exists at a particular 

point, r, in space [1].  One of the most precise, and certainly valuable, theoretical tools available for the study of 

quantum-mechanical systems where quantum-statistical effects are important is second- quantized field theory 

[2]. This theory has formed the basis for many of the most successful treatments of Bose-Einstein condensed 

systems.  It is worth to mention here that the phenomenon of Bose-Einstein condensation was predicted by 

Albert Einstein in 1925 [3,4], after generalizing Satyendra Nath Bose’s derivation of Planck’s distribution for 
photons [5] to the case of non-interacting massive bosons.  Bose-Einstein condensation BEC has been a widely 

studied research topic among physicists and applied mathematicians since its first experimental realization of 

(BEC) in ultra cold atomic gases were initially verified by a sequence of experiments in 1995 by Anderson et al. 

(vapor of rubidium) [6] and Davis et al. (vapor of sodium) [7] that those atoms were confined in magnetic traps 

and cooled down to low temperatures at an order of micro-Kelvin [8].  For detailed discussion see also [6-7].  In 

these verifications, theoretical exploration of characteristic trapped potential needs a mathematical model 

describing those potentials which are used experimentally to produce BEC at very low temperatures.   Many 

different shape of Bose-Einstein condensation have been achieved by using different type of trapping potential,   

for example cigar-shaped BEC which has been considered an interesting subject especially in coherent atom 

optics [9-11]. External parabolic potential in highly anisotropic axial symmetry has been used to develop BEC 

see for example [12-18].  In some literatures, many authors investigated the effect of gravitation [19] by adding 
the gravitational potential as an external interaction.  In this paper, we analyze in one dimension the different 

forms of trapping potential which are typically used in experiments of BEC.  This paper focuses on analysis of 

the wave function by solving the Gross-Pitaevskii equation in one dimension under the influence of harmonic 

oscillator trapping potential. 

 

 

II. THEORY 
A) Mathematical background 

Starting from the many-body Hamiltonian description of the cold atoms, and by allowing for the order 
parameter or wave function it is possible to reduce the problem, for the condensed fraction only. It is governed 

by a nonlinear Schrödinger equation, the Gross–Pitaevskii equation (GPE) [20–24]  

 −
ℏ2

2𝑚
∇𝑥

2 + 𝑉𝑡𝑟𝑎𝑝  𝑥 + 𝜆1𝐷 𝜓(𝑥) 2 𝜓 𝑥 = 𝜇𝜓(𝑥)                                                                                             (1) 

Where ℏ  is the reduced Planck constant, m the mass of the boson, Vtrap a trapping potential spatially confining 

the condensate, and μ the chemical potential of the condensate,   physically, the nonlinearity corresponds to the 
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mean field exerted on one boson by all the others and is given, for a condensate of N bosons in one dimension, 

by 

𝜆1𝐷 ≡ 𝑔1𝐷𝑁 =
4𝜋ℏ2𝑎𝑁

𝑚
                      (2) 

a here is the scattering length, which varies according to the species of bosons.  The energy associated with the 

wave function ψ(x) is obtained according to [20–24] 

𝐸 𝜓 = 𝑁  
ℏ2

2𝑚
 ∇𝜓(𝑥) 2𝑉𝑡𝑟𝑎𝑝  𝜓(𝑥) 2 +

𝜆1𝐷

2
 𝜓(𝑥) 4 𝑑𝑥

ℝ
               (3) 

for the Bose-Einstein condensed system.  Here the external trapping potential Vtrap is taken to be time-

independent. The GPE “which is a self-consistent mean field nonlinear Schrodinger equation (NLSE)” was first 

developed independently by Gross [25] and Pitaevskii [26] in 1961 to describe the vortex structure in super-

fluid. The macroscopic wave function/order parameter is normalized to the total number of particles in the 

system, which is conserved over time, i.e. 

  𝜓(𝑥, 𝑡 2𝑑𝒓 = 1                           (4) 

For ideal (non-interacting) gas, all particles occupy the ground state at T = 0 K0 and 𝜓(𝑥, 𝑡)  in the GPE 

describes the properties of all N particles in the system. For interacting gas, owing to the inter-particle 

interaction, not all particles condense into the lowest energy state even at zero temperature. This phenomenon is 

called the quantum depletion. In a weakly interacting dilute atomic vapor, the main concern in this paper, the 

non-condensate fraction is very small. The mean field theory can be successfully applied and the quantum 

depletion can be neglected at zero temperature, assuming a pure BEC in the system. If Vtrap is continuous and 

goes to +∞ at infinity, and if λ1D ≥ 0, the ground state of E[ ψ ] exists and is unique up to a global phase. In 

addition, the global phase can be chosen such that ψGS is real-valued, and positive on real coordinates. In this 
work, we will consider cases where the confinement Vtrap is so tight in some spatial dimension, the x- axis that 

the condensate can actually be considered a one-dimensional object. This leads to different representations of 

the nonlinearity λ and the expression for the coupling g1D can be found in Refs [21-23] which we refer to a 

detailed discussion of the validity of the mean field approximation in this case.  

B) Different external trapping potentials 

 In early BEC experiments, quadratic harmonic oscillator well was used to trap the atoms. Recently 

more advanced and complicated traps have been applied for studying BECs in laboratories [27-30]. In this 

section, we will review several typical trapping potentials which are widely used in current experiments. 

I. Three-dimensional (3D) harmonic oscillator potential hop [13]: 

𝑉ℎ𝑜𝑝  𝒓 = 𝑉ℎ𝑜𝑝  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝  𝑧            𝑉ℎ𝑜𝑝  𝒓 =
𝑚

2
𝜔𝑟

2𝑟2,   r=x,y,z                                                     (5) 

Where, ωx, ωy, and ωz are the trapping frequencies in x-, y-, and z-direction respectively. 

II. 2D harmonic oscillator + 1D double well potential dwp (Type I) [13]: 

𝑉𝑑𝑤𝑝
1  𝑟 = 𝑉𝑑𝑤𝑝

1  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝 (𝑧) 𝑉𝑑𝑤𝑝
1  𝑟 =

𝑚

2
𝜈𝑥

4 𝑥2 − 𝑎 2 2            (6) 

Where, ±a ̂ are the double w ell centers along the x-axis, νx is a given constant with physical dimension 1/[m 
s]1/2. 

III. 2D harmonic oscillator + 1D double well potential (DWP) (Type II) [13]: 

𝑉𝑑𝑤𝑝
 2  𝑟 = 𝑉𝑑𝑤𝑝

2  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝  𝑧   𝑉𝑑𝑤𝑝
 2  𝑟 =

𝑚

2
𝜔𝑥

2  𝑥 − 𝑎  2                                              (7) 

IV. 3D harmonic oscillator + optical lattice potential(OPTLP) [13]: 

𝑉ℎ𝑜𝑝 (𝑟) = 𝑉ℎ𝑜(𝑥) + 𝑉𝑜𝑝𝑡 (𝑥) + 𝑉𝑜𝑝𝑡 (𝑦) + 𝑉𝑜𝑝𝑡 (𝑧)  𝑉𝑜𝑝𝑡  𝜏 = 𝑆𝜏𝐸𝜏𝑠𝑖𝑛
2(𝑞 𝜏𝜏)                                  (8) 

where 𝑞 𝜏 = 2𝜋/𝜆𝜏 is the angular frequency of the laser beam, with wavelength  λτ, that creates the stationary 1D 

periodic lattice, Eτ=(ℏ2 𝑞 𝜏
2 )/2m  is the recoil energy, and Sτ is a dimensionless parameter characterizing the 

intensity of the laser beam. The optical lattice potential has periodicity Tτ=π/𝑞 𝜏  =λτ /2 along the τ-axis (τ= x; y; 
z). 

V. 3D box potential [19]:  

𝑉𝑏𝑜𝑥  𝑥 =  
0    0 < 𝑥,𝑦, 𝑧 < 𝐿
∞   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                         (9) 

where L is the length of the box. 

 

C) Dimensionless External Potential:   

 The choices for the scaling parameters t0 and x0, the dimensionless potential V (r) with γy = t0ωy and γz = 

t0ωz, the energy unit𝐸0 =
ℏ

𝑡0
=

ℏ2

𝑚𝑟0
2  , and the interaction parameter 𝛽 = 4𝜋𝑎𝑠𝑁/𝑟0  for different external trapping 

potentials are given below: 

I.  𝑡0 =
1

𝜔𝑟
, 𝑟0 =  ℏ/𝑚𝜔𝑟 ,       𝑉 𝑟 =

1

2
 𝑥2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2 ,       

II. 2D harmonic oscillator + 1D double well potential (type I):  

 𝑡0 = (𝑚/ℏ𝜈𝑟
4)1 3 ,   𝑟0 = (ℏ/𝑚𝜈𝑟

2)1 3 ,   𝑎 =
𝑎 

𝑟0
,   𝑉 𝑟 =

1

2
  𝑥2 − 𝑎2 2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2    
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III.  2D harmonic oscillator + 1D double well potential (type II):  

  𝑡0 = 1/𝜔𝑟 , 𝑟0 =  ℏ/𝑚𝜔𝑟 , 𝑎 =
𝑎 

𝑟0
,       𝑉 𝑟 =

1

2
    𝑟 − 𝑎  2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2  

IV. 3D harmonic oscillator + optical lattice potential:  

𝑡0 = 1/𝜔𝑟 , 𝑟0 =  ℏ/𝑚𝜔𝑟 , 𝑘𝑟 = 2𝜋2𝑟0
2𝑆𝜏/𝜆𝜏

2 , 𝑞𝜏 = 2𝜋𝑟0/𝜆𝜏    𝜏 = 𝑥,𝑦, 𝑧   

𝑉 𝑟 =
1

2
 𝑥2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2 + 𝑘𝑥𝑠𝑖𝑛

2 𝑞𝑥𝑥 + 𝑘𝑥𝑦 𝑠𝑖𝑛
2 𝑞𝑦𝑦 + 𝑘𝑧𝑠𝑖𝑛

2(𝑞𝑧𝑧). 

V. 3D box potential:    𝑟0 =
𝑚𝐿2

ℏ
, 𝑟0 = 𝐿   𝑉 𝑥 =  

0    0 < 𝑥,𝑦, 𝑧 < 1
∞          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

III. RESULT AND DISCUSSION: 
It is worth mentioning here that one can assume the atoms are tightly confined in two directions and 

can be successfully described by one-dimension by Appling harmonic oscillator potential.  A Crank- Nicolson 

Scheme is employed for solving the Gross–Pitaevskii equation.  The time interval used in this solution is 

0.00020 and the space step is 0.002500.  The most significant factors which affects this numerical solution is the 

stability since a constant amplification in one time step turns into an exponential amplification over time. In 

addition to this classical stability requirement, we would also like that the norm of the system is unchanged.  In 

the present case this corresponds to conservation of the particle number and that the energy are unchanged. 
These considerations from the physical properties of the system occasionally do not fulfill the norm and energy 

preservation properties.  Careful adjustments between the time interval and space step will reflect the physical 

properties of this system is satisfied and the result of this numerical solution can be explained satisfactory.   The 
distribution of the harmonic oscillator potentials for different values of frequencies is shown in figure (1).    One 

can conclude from this figure that the shape of distributions of the potential are not affected by the values of the 

frequencies; it preserves the parabola like distributions but the area of this distributions are increases as the 

frequencies of the oscillator potential increase.  Changing the harmonic oscillator potential in term of values will 

reflect definitely on the distribution of the normalized wave function along the x-Axis as shown in figure (2).  It 

seem from this figure that as the value of the harmonic oscillator potential decreases, the distribution of the 

wave function along the x-axis becomes broader mirroring a Gaussian distribution.   The nonlinearity terms has 

an effect on wave function in term of value and distribution, figure (3) shows the initial distribution of wave 

function and the distribution after 20000 runs for different values of nonlinearity and fixed value of 

dimensionless frequency ratio.  At the centre of the trapping potential when x = 0 there are linear relations 

between the energy and the chemical potential as shown in figure (4), more over this linear relation is also 

recorded between the normalized wave function and the energy as shown in  figure (5).  This linear relation are 
violated between the energy and frequency ratio (Figure 6) from one side and between the wave function and 

the chemical potential from other side.  The relation between the normalized wave function along the z-direction 

and trapping potential along the y-direction and the axis of propagation (x-axis) is shown in figure (8) with 

contour levels of the wave function applied over the surface view.  As a conclusion one can say that each terms 

in Gross–Pitaevskii equation play minor and/or major role in analysis the wave function of the Bose-Einstein 

condensation, and by careful handling these terms will bring the computational values to a satisfactory 

experimental one.  

 

 

 

      
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure (2) Distribution of Wave Function 
along the X-axis 

 

Figure (1) Distribution of 

Harmonic Potentials along the X-axis 
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(8) Surface view with contour levels of 

Normalized wave function 
 

Figure (6) Chamical Potentials as a function 
of Gamma X  

 

Figure (7) Wave Function as a function of 
Chemical Potential 

 

Figure (3) Distribution of Wave Function 

along the X-axis 

 

Figure (4) Energy VS Chemical Potentials  

 

Figure (5) Wave Function as a function of 
Chemical Potential 
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